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This paper is concerned with fluid flows through membranous elastic tubes. The tubes 
are assumed to be either untethered (except at  the ends), or to be tethered by axial 
forces that prevent all axial motion of the tube. 

First we verify, for axisymmetric deformations that vary slowly in the axial direc- 
tion, that the elastic balance of the tube can be expressed in terms of a ‘tube law’. 
I n  the case of the tethered tubes, the tube law takes the widely used form of a pressure/ 
area relation for both steady and unsteady deformations. However, for untethered 
tubes, the tube law will generally be time-dependent if the deformations are unsteady. 
Conditions are then derived between the up- and downstream flows of a turbulent 
elastic jump. Although it is necessary for the elastic balance to be described by a tube 
law far up- and far downstream of the jump, we do not assume that the tube law is 
valid inside the jump. The conditions we derive are believed to hold for both collapsed 
and expanded tubes. 

The theory has applications in describing fluid flows within, for example, the air- 
ways, blood vessels and the urethra. 

1. Introduction 
In  recent years there have been many studies of fluid flow through flexible tubes, 

motivated, for example, by the physiological problems of blood flow through arteries 
and veins, and air flow from the lungs. An extensive list of applications has been given 
by Shapiro (197731, with particular reference to collapsed tubes. 

An often-used model of such flows is based on the assumptions that the fluid is 
incompressible and inviscid, that the flow is irrotational, and that all disturbances 
have a long wavelength. Further, if the tube is perfectly elastic, it is generally con- 
cluded that, for sufficiently long wavelength disturbances, the entire effect of the 
tube upon the fluid can be described by a tube law relating the local transmural 
pressure p t  to the local cross-sectional area A and time t (see e.g. Nicholson, Heiser & 
Olsen 1967; Bird 1964 private communication reported in Rudinger 1966) : 

pt = P ( A , t ) .  (1 .1 )  

We have here assumed that the tube is uniform along its axis. As will be demonstrated 
in $2 ,  it is sometimes necessary to retain the time dependence in ( l . l ) ,  even if the 
physical properties of the tube are time-independent. 

A characteristic feature of flows described by this model is that nonlinear waves 
steepen until the one-dimensional approximation breaks down locally; a t  which 

t Present address : Department of Engineering Sciences and Applied Mathematics North- 
western University, Evanston, Illinois 60901, U.S.A. 
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point a discontinuity forms between two sections of tube for which the long-wave- 
length approximation remains valid. The occurrence of these ‘ discontinuities’ or 
elastic jumps, which are sometimes also referred to as ‘shocks’, has been pointed out 
by many authors (e.g. Skalak 1966). Beam (1968) has interpreted observations of 
Erlanger and Bramwell (Bramwell 1940) as experimental evidence of the formation 
of travelling elastic jumps. Stationary jumps have been reported by Griffiths (1971, 
1975), Shapiro (1977a), Elliott & Dawson (1979) and Kececioglu et al. (1981). 

Various authors have proposed equations to govern these elastic jumps (e.g. 
Lambert 1958; Beam 1968), but as Kamm & Shapiro (1979) have pointed out, there 
is no fully satisfactory theory either for the structure of elastic jumps or for the change 
in state across such jumps. The aim of this paper is to  tackle the latter problem by 
accounting satisfactorily for the elastic balance within the jump. 

This elastic balance will naturally depend on the tethering forces applied to the 
surface of the tube. Further, the tube law (1.1) is an important part of the one- 
dimensional analysis from which an elastic jump can arise and will be assumed to 
hold far up- and far downstream of an elastic jump. Hence in $ 2 we first verify that 
for two types of tethering a tube law can be recovered for quasi-one-dimensional 
axisymmetric disturbances. Then in $3,  an integral relation is derived between the 
tube law and the longitudinal component of the force exerted by the transmural 
pressure on a tube of non-uniform cross-section. The proofs given remain valid for 
collapsed tubes on the assumption that the tube laws exist for sufficiently quasi-one- 
dimensional disturbances. Further they are also valid even when the tube law does not 
describe the elastic balance a t  all points of the tube. 

The results of $ 3 are combined with mass and momentum conservation in $4 ,  in 
order to find conditions relating the far up- and far downstream flows of turbulent 
elastic jumps. Finally in 9 5, a discussion of the mechanism of energy loss is given. 

2. Tubelaws 
We shall assume that all deformations are adiabatic, and that the tube walls are 

perfectly elastic, homogeneous and membraneous. I n  the case of unsteady defor- 
mations we will assume that the inertia of the wall is sufficiently small in order that 
the elasticity can be based on a quasi-steady analysis. For example, a scaling argu- 
ment demonstrates that a sufficient condition for this assumption to be valid for an 
elastic jump propagating into still fluid is 

where p is the density of the fluid, and pm, h, and a, are respectively the density, 
thickness and radius of the undeformed tube wall. This condition is normally satisfied 
by human or canine arteries (see e.g. Caro, Pedley & Seed 1974; McDonald 1974). 

We will consider two types of tethered tubes: 
(i) tubes that are untethered except a t  their ends; 
(ii) tubes that are maintained a t  a predetermined uniform axial strain during any 
deformation, by an axial tethering force which is capable of preventing axial move- 
ment from the uniform stretched position (cf. Hawley 1970). For ease of reference we 
will henceforth refer t o  such constrained tubes as ‘ longitudinally tethered ’ tubes. 
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FIGURE 1. Diagram of the forces acting on the membrane. -, deformed position of 
membrane; - . -, axis of revolution. 

Because physiological vessels, such as arteries, experience considerable longitudinal 
constraint in situ (McDonald 1974), the latter form of tethering is expected to model 
such vessels more accurately than the former. 

In  this section we will concentrate on axisymmetric deformations of a circular tube, 
as these lead to simple elastic-balance equations from which the tube laws for both 
longitudinally tethered and untethered tubes can be derived. However, on the basis 
of these results, we will postulate the form of the tube laws in the case of sufficiently 
long wavelength non-axisymmetric deformations. 

Azisymmetric de form~~ion  of a circular elastic cylinder 
We choose cylindrical polar co-ordinates (r, 8, x )  as illustrated in figure 1.  We denote 
by pi@) and pe(x) the internal and external pressures which generate the deformation, 
and by a ( z )  the deformed radius of the membrane. We also define N,(z) and N2(z) as 
the azimuthal and longitudinal stress resultants (see figure i),  and 9 ( z )  as the im- 
posed axial load per unit area acting over the tube's surface (i.e. the possible tethering 
force). Then the static balance equations are (see e.g. Flugge 1973) 

where 

d 
sin Q Nl - cos Q dz (aN2) = a cos q5 9, 

d2a 
a dz2 

'0s' Nl - cos3 Q - N2 = p i  - pe  - sin q5 2, 

da 
tan Q = -. 

dz 

(2.2a) 

( 2 . 2 b )  

(2.2c) 

I n  order to complete the specification, a constitutive relation is required between 
the stresses and stretches generated by the deformation If the membrane is hom- 
ogeneous and isotropic then it can be described by a two dimensional work function 
W(h,,h,),t where A, and A, are the principal stretches. Because of the symmetry 
associated with axisymmetric deformations, A, and A, will be given by stretches of 
material elements in the azimuthal and longitudinal directions. Consequently, from 
the general theory of deformations (see e.g. Green & Adkins 1960) 

t I am grateful to Dr J.  M. Rallison for suggesting the introduction of a two-dimensional work 
function, 
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I n  fact this relation holds if the membrane is not fully isotropic, but displays sym- 
metry of material response only about the planes perpendicular to the 0- and z-axes 
in its undeformed state (cf. physiological vessels, Pate1 & Vaishnav 1972). W is then 
no longer required to be a symmetric function of A, and A,, as it is when the membrane 
is isotropic. 

Although we do not non-dimensionalize the variables, we introduce a scaled axial 
co-ordinate 

z = 62, ( 2 . 4 ~ )  

where 6 is the ratio of a typical radius to  a typical axial length scale. For quasi-one- 
dimensional disturbances 

8-4 1. (2.4b) 

Using (2.4b) i t  is possible to deduce tube laws for both longitudinally tethered and 
untethered tubes. 

(a) ~ o n g ~ t u d ~ n a l l y  tethered tubes. If the imposed uniform axial strain is e, then the 
principal stretches are given by 

a l + e  A 1 = - ,  A - 
a0 z - G q L 3 .  

Substituting (2.3)-(2.5) into (2.2) and expanding in powers of 6, we obtain 

where 

(Al,  1 + e )  + O ( P )  
i aw pi -pe = -- 

a( 1 + e)  ahl 

= P , ( A , e ) + 0 ( J 2 ) ,  

A = nu2. 

( 2 . 6 ~ )  

(2.6b) 

Thus a tube law is recovered in the form of a pressure/area relation independent of 
time. Further, from (2.2a),  (2.3),  (2.4), 9 = O(S) andis thussmall, althoughimportant. 

Equation ( 2 . 6 ~ )  represents a balance between the hoop stresses and the transmural 
pressure (Nicholson, Heiser & Olsen 1967), and is the same relation between pressure 
and area as is found for a uniformly pressurized (untethered) circlilar elastic tube of 
fixed length. This is not surprising as a material element of both a longitudinally 
tethered tube and a uniformly pressurized tube has the same axial length to O(8,). 
Further, the axial length of a material element remains approximately constant for 
slowly varying deformations if the tube is collapsed. We might therefore also expect 
a tube law to hold, and to take the form of a pressure/area relation, for longitudinally 
tethered collapsed tubes. We note, however, that in this case the elastic balance will 
include important contributions from both the hoop stresses and the circumferential 
bending moments. Further, these forces will in general be much smaller than the 
longitudinal tension. Hence, in order that the longitudinal tension does not contribute 
significantly to the balance of transmural pressure, (2.4b) will have to be strengthened, 
for example, a t  least to 6 < h,/u, if e p 0. 

( b )  Untethered tubes. I n  this case 

a 
2 ' 0 ,  A,=- .  

no 
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Using (2.2c)-(2.3) and (2.8), a first integral to (2.2a),  which is also a first integral of 
the energy equation, can be found, viz 

aW 
ah, 

h -- w = f ( t ) .  (2.9) 

The time dependence off  is associated with any unsteadiness of the deformations 
(which nevertheless vary sufficiently slowly with time to justify a quasisteady elastic 
balance). 

The value f takes will, in general, depend both on the deformation over the entire 
length of the tube and on the conditions imposed on the ends of the tube. For example, 
if the tube is of undeformed length Lo and is attached to rigid ends a fixed distance 
L apart, f is determined by (i) the areas imposed at  the ends, (ii) the longitudinal 
pressure distribution, and (iii) a condition expressing conservation of mass, vix 

(2.10) 

I n  order to deduce a tube law, we consider the limit 6 -+ 0. Then expanding (2.2b) 
in powers of 6, we have using (2.2c)-(2.4), that  

(2.1 1 a )  

Prom (2.7)-(2.9), this can be expressed in the form 

A time-dependent tube law is thus recovered, even though the physical properties 
of the tube do not vary in time. I n  a particular steady state or iff is constant, (2.11) 
reduces to a pressurelarea relation, although one that is not the same as (2.6).  This 
difference arises because, whereas for longitudinally tethered tubes the imposed axial 
load Y maintains the tube at  constant axial strain, for untethered tubes a change in 
axial strain with changing radius is necessary to ensure the longitudinal elastic balance. 

I n  the case of untethered collapsed tubes, the leading-order cross-sectional balance 
for deformations that vary sufficiently slowly in the axial direction is expected to be 
between the transmural pressure, circumferential bending moments and hoop stresses 
(as for longitudinally tethered collapsed tubes). Under such circumstances we antici- 
pate that a tube law will exist. However, (2.11) alerts us to the fact that there is no 
a priori reason why the tube law should take the form of a pressurelarea relation for 
unsteady deformations, such as those observed in the experiments of Conrad (1969). 
Further, the difference between (2.6) and (2.11) suggests that even in the case of steady 
experiments on spatially slowly varying untethered collapsed tubes, it may be better 
to determine the tube law directly from experiment rather than to infer i t  from that for 
a uniformly pressurized tube. 
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x- 

FIGURE 2. Illustration of a deformed elastic tube. The tube is approximately cylindrical for both 
z < z1 and z 2 z2. T, --++, longitudinal tension; A ,  area; p ,  uniform pressure. 

3. An integral relation 
I n  this section we derive integral expressions relating the tube laws? to  the axial 

component of the force exerted by the transmural pressure on the walls, for both 
longitudinally tethered and untethered orthotropic elastic tubes. We will assume that 
as z -+ I 00 the transmural pressure becomes approximately constant over the cross- 
section and sufficiently slowly varying for the tube law to hold (as is the case far up- 
and downstream of an elastic jump). However for z = 0(1), the pressure distribution 
is allowed to vary sufficiently rapidly in the axial direction that the tube law need not 
be satisfied at all points. 

(a)  Longitudinally tethered tubes 

We begin by supposing that the transmural pressure distribution is uniformly trans- 
lated to  the right by dz. Since the tube is assumed to be longitudinally homogeneous, 
the deformation similarly translates to the right, although the longitudinal tethering 
constrains all motion of the tube material elements to be transverse. Further, because 
the elements of the wall do not move in the direction that the tethering forces 9 
are applied, these forces do no work. The work done on the membrane between two 
arbitrary points 2, and 2,  can therefore be calculated as 

where dz is the (axial displacement), n is the unit normal and as is the surface of the 
tjube between z1 and z ,  (see figure 2) .  

However, the material is elastic, and so by definition no matter how it is deformed 
the work done on i t  depends only on the initial and final states, and not on the path of 
deformation, Thus if z, and z ,  are chosen where the walls are approximately cylindrical, 
the work done is equivalent to changing a tube of length dz from area A ,  to  area A,. 
By supposing this transition were achieved by changing tthe transmural pressure 
difference uniformly along the length dz,  we see that an alternative expression for the 
work done is given by 

t As the proofs do not depend on the deformations being axisymmetric, the integral relations 
will hold for collapsed tubes on the assumption that the elastic balance is described by a tube 
law ~ O Y  drforrnations that mry sufficiently slowly in the axial direction. 
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where &(A,  e )  is the tube law. Equating (3.1) and (3.2) we obtain 

where z* is the unit axial vector. This relation is valid whether or not the tube law 
holds a t  all points between x1 and z 2 .  

( b )  Untethered tubes? 

First we define Tl and T2 to be the total longitudinal forces exerted over the cross- 
sections a t  z1 and z2 respectively - see figure 2 .  Then because the deformations are 
assumed to  be sufficiently slowly varying a t  z1 and z2 for a tube law to hold to leading 
order, it also follows that, to leading order, the longitudinal force T, (a  = 1,2) is a 
function of area A ,  and transmural pressure pta,  i.e. 

Ta(A,>pta) (a = 172). (3-4) 

From the horizontal-force balance we therefore have, whatever the pressure distri- 
bution for z = O(l),  

jas(Pi-Pe)n.z*dS= T,-T2~g(A,,A,,ptlrPt2), (3.5) 

for some function g which is to be determined. 
At those points where the tube law is valid 

pi  -pe = pu ( A  ,f (3.6) 

where f is some parameter (for example it could be the longitudinal stretch a t  some 
specified area, or alternatively for axisymmetric deformations i t  might be defined as 
in (2.9)). In  the case of axisymmetric deformations we can show (from (2.9)) that the 
tube law is satisfied for the same value off a t  both z1 and z2;  in the case of collapsed 
tubes we only consider cases for which this is so.$ Then we can evaluate g by considering 
the particular exarryle in which the pressure distribution is sufficiently slowly varying 
for the tube law to be satisfied a t  all points between z1 and x2 .  We deduce that 
(cf. (3.3)) 

(3.7)  

Subject to the assumptions made for collapsed tubes, this relation is valid whether or 
not the tube law is satisfied a t  all points along the tube. 

The proofs leading to (3.3) and (3 .7)  in fact generalize for the case of axially uniform, 
thick-walled tubes$ that are in quasi-static equilibrium, if either (a )  the tubes are 
tethered by axial surface loads so as to  prevent axial motion of the tube a t  the point.. 

t We reiterate that by an ‘untethered’ tube, we mean a tube on which the only external load, 
other than the axial forces a t  the far ends of the tube, is a pressure force. 

2 We believe that it may be possible to demonstrate, using workfunctions and the elastic 
balance equations, that even for collapsed membraneous elastic tubes the tube law is always 
satisfied for the same values off at both z1 and z2 (in previous work, where the possible variation 
of the tube law with f has been overlooked, this question has not arisen). 

5 We include in the definition of thick-walled tubes the case of a block of elastic material 
through which a tube has been bored; siich tubes have been used by Kamm (private communi- 
ontion) in recent experiments. 
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V ‘42, P 2  

FICUBE 3. Diagrammatic illustration of an elastic jump. In  this frame the jump is stationary, 
and the tube walls move with horizontal velocity V .  The long-wavelength limit is valid far up- 
and far downstream. - . -, control surface. 

where the loads are applied (i.e. the generalization of longitudinal tethering), or if 
(b )  the tubes are untethered. The left hand sides of (3.3) and (3.7) need, however, to 
be replaced by 

IJSipin. z*ds-jJs,p,n. z * d ~ ,  (3.8) 

where 88; and as, are respectively the inner and outer surfaces of the deformed tube 
wall. 

For the case of a compressible material, it is also necessary to assume that the 
external pressure is uniform. The proofs then remain straightforward, although the 
tube laws need to be modified so that they become functions of the external pressure 
in addition to area, etc. (see e.g. Love 1944). 

4. Elastic jumps 
The concept of an elastic jump is analogous to that of a hydraulic jump in shallow 

water theory and a shock wave in gas flow down uniform rigid tubes. It is therefore a 
transition region, where the quasi-one-dimensional assumption has broken down, 
and which lies between two regions where this assumption is still valid. 

In  order to describe such elastic jumps we follow Beam (1968) and Oates (1975a), 
and consider an elastic jump that is moving steadily with constant shape (cf. also 
Rayleigh’s (1914) treatment of hydraulic jumps). We then choose a reference frame 
fixedin the jump. The use of ‘upstream’ and ‘downstream’ with reference to the jump 
will be in the context of this frame. A control surface is also chosen just inside the tube 
wall, as illustrated in figure 3. 

We assume that the fluid is incompressible, and that the flow is irrotational and 
approximately inviscid.? Writing A,, V, and p 1  for the upstream area, velocity and 
internal pressure respectively, and A,, V, and p ,  for the corresponding values far 
downstream, we then have from conservation of mass and momentum 

n 

t Although viscous stresses on the walls and all viscous dissipation far up- and downstream 
will be neglected, viscons clirrsipat,ion associated witli turbulence in the vicinity of the jump will 
be important. 
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As in $9 2-3, we restrict attention to longitudinally tethered or untethered elastic 
tubes. Then from the quasi-one-dimensional assumption far up- and far downstream, 

Pl--P€! = Wl), Pz-Pe = W,). (4.3) 

I n  the case of untethered tubes, any possible time dependence in the tube law has been 
suppressed on the assumption that the time scale is long compared with the time it 
takes for fluid to pass through the jumpt (in fact if this were not the case the assump- 
tion that the elastic jump were approximately steady would be invalid). Using (3.3) 
or (3.7) the integral in (4.2) can be simplified. So if the external pressure is constant, 
substituting (4.1), (4.3) and (3.3) or (3.7) into (4.2), andintegrating by parts, we obtain 

( 4 . 4 4  

(4.4b) 

This is the same result as that of Beam (1968) and Oates ( 1 9 7 5 ~ ) ;  however, because of 
the arguments presented in $ 3  i t  has been necessary to assume neither that the tube is 
axisymmetric nor that the tube law holds within the jump. Equation (4.4) can also be 
recovered by applying the 'weak-solution method' (Lax 1054) to  the governing 
equations of motion for long-wavelength flows, when these equations have been 
written in the correct form to express both conservation of mass and momentum flux. 

Elliott & Dawson (1979) have made experimental measurements of elastic jumps 
generated on a (collapsed) elastic tube lying on a flat-bottomed sink (and thus a t  least 
partially tethered). Using a pressure/area relation measured in a separate experiment 
in which the transmural pressure was uniform along the tube, they showed that their 
results were in broad agreement with (4.4), although they also included a small 
empirical friction term to improve accuracy. 

It is convenient a t  this point to introduce the speed index F of uniform flows with 
a volume flux Q (see e.g. Shapiro 1 9 7 7 ~ ) :  

local fluid velocity A3dP -4. 
F(A) = = Q(--) 

local wave velocity P d A  
(4.5) 

Then, as is conventional, the flow is said to be supercritical or subcritical as F is greater 
or less than one. 

By differentiating (4.4b) and using (4.5), Oates (1975a) has previously shown that 
if there is to be a non-trivial solution to (4.4a),  there must exist A,  lying between A ,  
and A, such that 

Furthermore, Oates has demonstrated that the energy change per unit time across 
the jump can be written as 

energy change per unit time = - Q / l '  (L A - +) A 2 d A .  d A  (4.71 

By means of a scaling argument, this can be shown to be so in the case of jumps that form 
as a result of the steepening of long nonlinear waves. 
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Initial profile 

t t 

(0  (ii) 

FIGURE 4. The steepening of a simple wave to form an elastic jump. The direction of steepening 
depends on the elastic properties of the tube. (i) D2P > 0, the jump forms on the front of the 
wave. (ii) D2P < 0, the jump forms on the rear of the wave. +, wave velocity; +-, fluid 
velocity. 

Because the system is causal and the viscous forces on the tube wall are assumed to do 
a negligible amount of work, energy must be dissipated in the jump. With this condi- 
tion, and assuming A, to be unique, we see from (4.7) that  

‘1 either A, < A, and A, is a minimum of @, 

cr A, > A, and A, is a maximum of @.J 
(4.8) 

Oates ( 1 9 7 5 ~ )  did not allow for the latter possibility. Nevertheless, his conclusion that 
the flow is always supercritical far upstream and subcritical far downstream can still 
be shown to hold from (4.43-4.6). 

From (4.43) and (4.6), we also see that A, is a minimum or maximum of @ according 
as 

where 

( 4 . 9 4  

(4.93) 

A sufficient condition for A, to be unique is thus that D2P is single-signed. Further, 
in those circumstances when a tube law reduces to a pressure/area relation, Nicholson 
et al. (1967) have deduced that compression waves steepen and rarefaction waves 
flatten, or vice versa, according as 

D2P 2 0. (4.10) 

Equations (4.8)- (4.10) are hence seen to be consistent; for if D2P > 0, compression 
waves steepen and an elastic jump is required with A, < A,, while if D2P < 0, rare 
faction waves steepen and a jump is required with A, > A, - see figure 4. Although 
Oates (1975u, b )  came near to the above result, he assumed that the speed index always 
decreases with increasing area; whereas from (4.5), 

pQ2D2P -- - -  d P  
dA (A3dP/dA),’ 

(4.11) 
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Thus this is only true if D2P > 0 .  When D2P < 0, the reverse holds, and so for the 
same flow rate a supercritical flow has a larger cross sectional area than a subcritical 
one.? 

If A ,  were not unique, D2P could not be single-signed, and the final solution would 
be the result of an interaction of the above opposing effects. 

5.  The energy loss 
The proposed solution for elastic jumps will only be valid for jumps in which the 

necessary energy loss can be accounted for. Moreover, in performing the stress balance 
in the tube wall we have assumed that the wall remains perfectly elastic and that the 
tethering mechanism does not break down. No energy loss can therefore take place 
in the wall. We hence expect that the major cause of energy loss for elastic jumps 
described by the above theory will be turbulent dissipation. 

Furthermore, although it is consistent to ignore the effects of longitudinally moving 
boundaries in the calculations of the mass and momentum fluxes for a given turbulent 
jump, the actual existence of a turbulent jump may depend on the velocity of the 
walls. As illustrations we will consider the particular exa.mples in which ( 1 )  the jump 
and walls are both at  rest and (2) the upstream wall and fluid velocities are equal (as 
for a jump propagating into fluid a t  rest). 

Jump and walls at rest 

This case naturally subdivides according as A ,  5 A,. 
(a) A ,  < A,. The adverse pressure gradient present within the enlargement is 

expected to lead, for all but the weakest of jumps, to flow reversal within the wall 
boundary layer, separation, and for sufficientIy large Reynolds numbers the generation 
of a turbulent region; in that case the above theory is expected to yield an accurate 
description. The separated region will however be different from that which occurs a t  
the rapid enlargement of a rigid tube. For, in the case of a rigid tube, the pressure on 
the tube wall is assumed approximately constant as the result of the formation of a 
‘steady ’ jet and a surrounding slow-moving region a t  the expansion. Consequently 
the Borda-Carnot ‘shock’ condition holds (see for example Batchelor 1967). This 
condition predicts a smaller downstream pressure recovery than (4.4). It apparently 
cannot hold for an elastic tube because the elastic-balance equations cannot be satis- 
fied if there is a constant transmural pressure distribution a t  the expansion. 

A possible explanation for the departure from the Borda-Carnot condition is that 
the separation at  the expansion is intermittent, with separated regions forming and 
then disappearing as vortices are shed (cf. the ‘ large transitionary stall regime’ de- 
scribed by Reneau, Johnston & Kline (1967) for a two-dimensional diffuser). Further, 

t The theory of long-wave fluid flow down a channel of arbitrary cross-section is analogous 
to much of the work of this section. That problem is characterized by a function h(A)  relating 
the surface elevation h to the cross-sectional area A it  encloses. h(A)  plays an equivalent role 
to the tube law. For example, long waves steepen a t  the front/back, and for a specified flow 
rate the Froude number decreases/increases with elevation, as 0% >< 0, cf. (4.10)-(4.11). 
Furthermore, for a hydraulic jump to be dissipative, the upstream area A ,  and the downstream 
area A ,  must satisfy, A , / A ,  2 1 according to the same criterion. 
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Kamm (1 981, private communication) has observed relatively large amplitude oscil- 
lations a t  the expansion for certain flow rates. These oscillations may be the result of 
a resonant interaction between the wall’s own elastic vibrations and the forcing due 
to the pressure fluctuations associated with intermittent separation. 

( b )  A ,  > A,.  I n  this case there is a favourable pressure gradient associated with 
the mean flow, and turbulence downstream of the contraction is unlikely. Upstream 
separation may occur (see Smith 1977, 1978), but the contraction then has to be 
relatively more severe compared with the expansion needed to generate downstream 
separation in the previous case.t When upstream separation is present, an instability 
of the free shear layer may lead to the turbulence necessary for the above theory to 
be valid. 

Upstream wall and jluid ijelocities equal 

Such jumps will eventually be generated by the steepening of a pulse propagating 
along a tube of otherwise undisturbed fluid, assuming viscous effects remain negligible 
until the jump is formed. No boundary-layer separation is envisaged. For example, 
consider the case A ,  < A,. Then the longitudinal velocity of the walls will everywhere 
be greater than or equal to that of the fluid (at least for a longitudinally tethered 
tube). Consequently, flow reversal in the boundary layer will not occur without flow 
reversal in the core. 

If turbulent elastic jumps exist, we therefore expect the generation of the turbulence 
to be associated with an instability of the inviscid flow. However, because of the 
presence of a material boundary in place of a free surface, there is no direct parallel to 
the breaking waves that lead to turbulence in the analogous turbulent bores. 

A further mechanism of energy loss for elastic jumps, which has been suggested by 
Pedley (1980), is radiation through a (stationary) wave train. Wavetrains have been 
observed upstream of steady turbulent elastic jumps by Kececioglu et al. (1981). The 
wavetrains associated with turbulent elastic jumps on axisymmetrically deformed 
tubes will be studied in a subsequent paper (see also Cowley (1981) and McClurken 
et al. (1981)). Here we note that modifications will be necessary to (4.4) if a wavetrain 
exists, as the flow will no longer be uniform both far up- and far downstream. 

Equation (4.4) will also not be accurate for jumps within which there is no turbu- 
lence. Two alternatives are then possible. The first is that either viscous or unsteadiness 
effects have become important, and that a ‘laminar’ elastic jump has formed. This 
possibility has been examined by Cowley (1981) for the case of jumps propagating into 
fluid a t  rest. The second possibility is that the elasticity and/or tethering assumptions 
have broken down. Examples of this case are the viscoelastic jumps studied by Kivity 
& Collins (1974), Johnson ( 1  971) and Buggisch (1980). 

6.  Conclusions 
By comparing the tube laws for both longitudinally tethered and untethered axi- 

symmetric elastic tubes, we have illustrated that the form of the tube law depends 
(crucially) on the nature of the tethering. For, in the case of a longitudinally tethered 
tube, the tube law was shown to be a function only of area and axial prestrain, while 

t This is illustrated in  the  design of a Venturi meter, for wliich the contraction is in general 
more severe than the  expansion. 
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for an untethered tube it was found in general to be a function of both area and time. 
Furthermore, in those circumstances under which the tube law for an untethered tube 
is time-independent, it still in general has a different form to that for a longitudinally 
tethered tube. We therefore suggest that the use of pressurelarea relations, derived 
under conditions of uniform axial prestrain, to describe the (unsteady) behaviour of 
an untethered tube should be re-examined (see e.g. Rudingcr 1970; Kamm & Shapiro 
1979). 

Without neglecting the effects of longitudinal tension, we have also derived a con- 
dition relating the volume flux to the up- and downstream areas for a turbulent elastic 
jump. Causality has then been invoked in order to determine whether the ratio of up- 
to downstream areas is greater or less than one. The result so obtained is in agreement 
with that required for causal elastic jumps to form as nonlinear waves steepen. 

A preliminary discussion of the effects of the velocity of the walls relative to the 
jump has also been given. For while the wall velocity has little effect on the jump 
conditions for a fluid of small viscosity, i t  may play a role in the actual existence of 
such jumps. For example, separation and a jump may be more likely if the walls are 
a t  rest than if they are moving downstream relative to the jump. 

The derived jump conditions are believed to be appropriate descriptions of the 
elastic jumps observed in the experiments of Griffiths (1971, 1975), Elliott & Dawson 
(1979) and Kamm & Shapiro (1979). We note, however, that we have taken no account 
of the viscous forces on the wall. As Elliott & Dawson (1979) have observed, in the 
case of stationary jumps these forces will lead to smaller pressure recoveries than those 
predicted by (4.4). Wall friction is also thought to explain partially the difference 
between (4.4) and the somewhat scattered experimental measurements of Kececioglu 
et al. (1981). A further important reason for the disparity between these experiments 
and (4.4) is the presence of wavetrains upstream of the jumps. The existence of these 
wavetrains means that there is no position upstream of the jump a t  which the tube 
is approximately uniform, and which is reasonably close to the jump. We also note 
that another (minor) reason for the disparity may be that, whereas the experiments 
were performed on ‘untethered’ tubes, the tube law used in (4.4) was that for a 
uniformly inflated tube (see $2). 

Equation (4.4) is also expected to be appropriate to the jump like transitions which 
occur in the urethra (Griffiths 1980) and the airways from the lung during forced 
expiration (Dawson & Elliott 1977). Further, numerical integration of the long- 
wavelength nonlinear model by Anliker, Rockwell & Ogden (197 l),  using experimental 
data for the boundary conditions, has indicated the probable formation of jumps in 
the arterial system if there is aortic insufficiency.t This result is supported by the 
work of Rudinger (1970), Bryant-Moodie & Haddow (1977) and Pedley (1980), who 
have studied the propagation of simple waves along an aorta modelled as a uniform 
elastic tube. They predicted the formation of jumps between 43 and 100 cm, from the 
heart normally, but within 20 cm for a diseased system. However, because these 
calculations ignore the branching and changing properties of the arterial system, the 
distances are probably an underestimate (Sugawara et al. 1973). Hence in practice 

t Aortic insufficiency, i.e. incompetent or leaking aortic valves, results in the extensive re- 
gurgitation of arterial blood from the aorta back into the left ventricle and the consequent 
generation of extremely large pressure pulses by the heart in order to maintain the necessary 
cardiac output per beat. 
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jumps are expected to form only in diseased systems. Such jumps are thought to 
provide an explanation of the so-called ‘pistol-shot’ sounds heard in patients with 
incompetent heart valves. If these arterial jumps are sufficiently strong to result in 
turbulent flow, a synthesis of our work with that on viscoelastic jumps by Kivity & 
Collins (1974) is expected to provide the best description. 

I would like to thank Dr T. J. Pedley for his guidance and encouragement; Professor 
Sir James Lighthill for auseful discussion on 3 4; and Professor A. Shapiro, Dr R. Kamm 
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by an award from the Science Research Council. 
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